Увеличение объема газа при постоянной температуре. Зависимость давления газа от объема

«Физика - 10 класс»

Состояние какого газа описывает уравнение Менделеева-Клапейрона.
Можно ли универсальную газовую постоянную считать фундаментальной постоянной?

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из трёх параметров - давление, объём или температура - остаются неизменными.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего называют газовыми законами .

Процессы, протекающие при неизменном значении одного из параметров, называют изопроцессами .

Слово «изопроцесс» - сложное слово, первая часть которого происходит от греческого слова isos - равный, одинаковый.

Отметим, что в действительности ни один процесс не может протекать при строго фиксированном значении какого-либо параметра. Всегда имеются те или иные воздействия, нарушающие постоянство температуры, давления или объёма. Лишь в лабораторных условиях удаётся поддерживать постоянство того или иного параметра с высокой точностью, но в действующих технических устройствах и в природе это практически неосуществимо. Изопроцесс - это идеализированная модель реального процесса, которая только приближённо отражает действительность.


Изотермический процесс.


Процесс изменения состояния системы макроскопических тел (термодинамической системы) при постоянной температуре называют изотермическим .

Слово «изотермический» происходит от греческих слов isos - равный, одинаковый и therme - теплота.

Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплом с большой системой - термостатом. Иначе при сжатии или расширении температура газа будет меняться. Термостатом может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса. Согласно уравнению состояния идеального газа (10.4), если масса газа не изменяется, в любом состоянии с неизменной температурой произведение давления газа на его объём остаётся постоянным:

pV = const при Т = const. (10.6)

Этот вывод был сделан английским учёным Р. Бойлем (1627-1691) и несколько позже французским учёным Э. Мариоттом (1620-1684) на основе эксперимента. Поэтому он носит название закона Бойля-Mapuoттa .

Для газа данной массы произведение давления газа на его объём постоянно.

Закон Бойля-Мариотта справедлив обычно для любых газов, а также и для их смесей, например для воздуха. Лишь при давлениях, в несколько сотен раз больших атмосферного, отклонения от этого закона становятся существенными.

Кривую, изображающую зависимость давления газа от объёма при постоянной температуре, называют изотермой .

Изотерма газа изображает обратно пропорциональную зависимость между давлением и объёмом. Кривую такого рода в математике называют гиперболой (рис. 10.1).

Различным постоянным температурам соответствуют различные изотермы. При повышении температуры газа давление согласно уравнению состояния (10.4) увеличивается, если V = const. Поэтому изотерма, соответствующая более высокой температуре Т 2 , лежит выше изотермы, соответствующей более низкой температуре Т 1 (см. рис. 10.1).

Для того чтобы процесс происходил при постоянной температуре, сжатие или расширение газа должно происходить очень медленно. Дело в том, что, например, при сжатии газ нагревается, так как при движении поршня в сосуде скорость и соответственно кинетическая энергия молекул после ударов о поршень увеличиваются, а следовательно, увеличивается и температура газа. Именно поэтому для реализации изотермического процесса надо после небольшого смещения поршня подождать, когда температура газа в сосуде опять станет равной температуре окружающего воздуха.

Кроме этого, отметим, что при быстром сжатии давление под поршнем сразу становится больше, чем во всём сосуде. Если значения давления и температуры в различных точках объёма разные, то в этом случае газ находится в неравновесном состоянии и мы не можем назвать значения температуры и давления, определяющие в данный момент состояние системы. Если систему предоставить самой себе, то температура и давление постепенно выравниваются, система приходит в равновесное состояние.

Равновесное состояние - это состояние, при котором температура и давление во всех точках объёма одинаковы.

Параметры состояния газа могут быть определены, если он находится в равновесном состоянии.

Процесс, при котором все промежуточные состояния газа являются равновесными, называют равновесным процессом .

Очевидно, что на графиках зависимости одного параметра от другого мы можем изображать только равновесные процессы.


Изобарный процесс


Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным .

Слово «изобарный» происходит от греческих слов isos - равный, одинаковый и baros - вес, тяжесть.

Согласно уравнению (10.4) в любом состоянии газа с неизменным давлением отношение объёма газа к его температуре остаётся постоянным:

Этот закон был установлен экспериментально в 1802 г. французским учёным Ж. Гей-Люссаком (1778-1850) и носит название закона Гей-Люссака .

Закона Гей-Люссака:

Для газа данной массы при постоянном давлении отношение объёма к абсолютной температуре постоянно.

Согласно уравнению (10.7) объём газа при постоянном давлении пропорционален температуре:

V = const Т. (10.8)

Прямую, изображающую зависимость объёма газа от температуры при постоянном давлении, называют изобарой .

Разным давлениям соответствуют разные изобары (рис. 10.2). Проведём на рисунке произвольную изотерму. С ростом давления объём газа при постоянной температуре согласно закону Бойля- Мариотта уменьшается. Поэтому изобара, соответствующая более высокому давлению р 2 , лежит ниже изобары, соответствующей более низкому давлению p 1 .

В области низких температур все изобары идеального газа сходятся в точке Т = 0. Но это не означает, что объём реального газа обращается в нуль. Все газы при сильном охлаждении превращаются в жидкости, а к жидкостям уравнение состояния (10.4) неприменимо. Именно поэтому, начиная с некоторого значения температуры, зависимость объёма от температуры проводится на графике штриховой линией. В действительности таких значений температуры и давления у вещества в газообразном состоянии быть не может.


Изохорный процесс


Процесс изменения состояния термодинамической системы при постоянном объёме называют изохорным .

Слово «изохорный» происходит от греческих слов isos - равный, одинаковый и chora - место, пространство, занимаемое чем-нибудь.

Из уравнения состояния (10.4) вытекает, что в любом состоянии газа с неизменным объёмом отношение давления газа к его температуре остаётся постоянным:

Этот газовый закон был установлен в 1787 г. французским физиком Ж. Шарлем (1746-1823) и носит название закона Шарля .

Для газа данной массы отношение давления к абсолютной температуре постоянно, если объём не меняется.

Согласно уравнению (10.9) давление газа при постоянном объёме пропорционально температуре:

р = const Т. (10.10)

Прямую, изображающую зависимость давления газа от температуры при постоянном объёме, называют изохорой.

Разным объёмам соответствуют разные изохоры. Также проведём на рисунке произвольную изотерму (рис. 10.3). С ростом объёма газа при постоянной температуре давление его, согласно закону Бойля- Мариотта, падает. Поэтому изохора, соответствующая большему объёму V 2 , лежит ниже изохоры, соответствующей меньшему объёму V 1 .

В соответствии с уравнением (10.10) все изохоры идеального газа начинаются в точке Т = 0. Значит, давление идеального газа при абсолютном нуле равно нулю.

Увеличение давления газа в любом сосуде или в электрической лампочке при нагревании можно считать изохорным процессом. Изохорный процесс используется в газовых термометрах постоянного объёма.

В заключение составим опорную схему (рис. 10.4) и покажем логические переходы связывающие различные законы и уравнения.

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными.

Возьмем закрытый сосуд с газом и будем нагревать его (рис. 4.2). Температуру газа будем определять с помощью термометра, а давление - манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 °С обозначим а затем будем постепенно нагревать наружный сосуд и записывать значения для газа. Оказывается, что график зависимости от построенный на основании такого опыта, имеет вид прямой линии (рис. 4.3, а). Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа.

Из подобия треугольников на рис. 4.3, а можно записать:

Если обозначить постоянную через у, то получим

По смыслу коэффициент пропорциональности у в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объеме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 °С, изменяется его давление при нагревании на

Выведем единицу температурного коэффициента у в СИ:

Повторяя описанный опыт для различных газов при различных массах, можно установить, что в пределах ошибок опытов точка А для всех графиков получается в одном и том же месте (рис. 4.3, б). При этом длина отрезка ОА получается равной Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна а температурный коэффициент давления Отметим, что точное значение у равно При решении задач обычно пользуются приближенным значением у, равным

Из опытов значение у впервые было определено французским физиком Ж. Шарлем, который в 1787 г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах у зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ.

Введение

Состояние идеального газа полностью описывается измеряемыми величинами: давлением, температурой, объемом. Отношение между этими тремя величинами определяется основным газовым законом:

Цель работы

Проверка закона Бойля-Мариотта.

Решаемые задачи

    Измерение давления воздуха в шприце при изменении объема учитывая, что температура газа постояна.

Экспериментальная установка

Приборы и принадлежности

    Манометр

    Ручной вакуумный насос

В данном эксперименте закон Бойля – Мариотта подтверждается с помощью установки показанной на рисунке 1. Объем воздуха в шприце определяется следующим образом:

где p 0 атмосферное давление, аp– давление, измеренное при помощи манометра.

Порядок выполнения работы

    Установите поршень шприца на отметке 50 мл.

    Плотно надеть свободный конец соединительного шланга ручного вакуумного насоса на выходной патрубок шприца.

    Выдвигая поршень, увеличивайте объем с шагом 5 мл, фиксируйте показания маномета по черной шкале.

    Чтобы определить давление под поршнем, надо из атмосферного давления вычесть показания монометра, выраженного в паскалях. Атмосферное давление равно приблизительно 1 бар, что соответствует 100 000 Па.

    Для обработки результатов измерений следует учитывать наличие воздуха в соединительном шланге. Для этого измерьте расчитайте объем соединительного шланга, измерив длину шланга рулеткой, а диаметр шланга штангенциркулем, учитывая, что толщина стенок составляет 1,5 мм.

    Постройте график измеренной зависимости объема воздуха от давления.

    Рассчитайте зависимость объема от давления при постоянной температуре по закону Бойля-Мариотта и постройте график.

    Сравните теоретические и экспериментальные зависимости.

2133. Зависимость давления газа от температуры при постоянном объеме (закон шарля)

Введение

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746-1823). Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру Т , а соответствующее давлениер - по манометру. Наполнив сосуд тающим льдом, определяли давлениер о , и соответствующую температуруТ о . Было установлено, что если при 0  С давлениер о , то при нагревании на 1  С приращение давления будет вр о . Величинаимеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно 1/273  C -1 . Величинуназывают температурным коэффициентом давления.

Закон Шарля позволяет рассчитать давление газа при любой температуре, если известно его давление при температуре 0  C. Пусть давление данной массы газа при 0  Cв данном объемеp o , а давление того же газа при температуреt p . Температура меняется наt , а давления изменяется нар о t , тогда давлениер равно:

При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприменим. Совпадение коэффициентов и, входящих в закон Шарля и закон Гей-Люссака, не случайно. Так как газы подчиняются закону Бойля - Мариотта при постоянной температуре, тоидолжны быть равны между собой.

Подставим значение температурного коэффициента давления в формулу температурной зависимости давления:

Величину (273+ t ) можно рассматривать как значение температуры, отсчитанное по новой температурной шкале, единица которой такая же, как и у шкалы Цельсия, а за нуль принята точка, лежащая на 273  ниже точки, принятой за нуль шкалы Цельсия, т. е. точки таяния льда. Нуль этой новой шкалы называют абсолютным нулем. Эту новую шкалу называют термодинамической шкалой температур, гдеT t +273 .

Тогда, при постоянном объеме справедлив закон Шарля:

Цель работы

Проверка закона Шарля

Решаемые задачи

    Определение зависимости давления газа от температуры при постоянном объеме

    Определение абсолютной шкалы температур путем экстраполяции в сторону низких температур

Техника безопасности

    Внимание: в работе используется стекло.

    Будьте предельно аккуратны при работе с газовым термометром; стеклянным сосудом и мерным стаканом.

    Будьте предельно внимательны при работе с горячей водой.

Экспериментальная установка

Приборы и принадлежности

    Газовый термометр

    Мобильный CASSY Lab

    Термопара

    Электрическая нагревательная плитка

    Стеклянный мерный стакан

    Стеклянный сосуд

    Ручной вакуумный насос

При откачке воздуха при комнатной температуре с помощью ручного насоса, создается давление на столб воздуха р0+р, где р 0 – внешние давление. Капля ртути также оказывает давление на столб воздуха:

В данном эксперименте этот закон подтверждается с помощью газового термометра. Термометр помещают в воду с температурой около 90°С и эта система постепенно охлаждается. Откачивая воздух из газового термометра с помощью ручного вакуумного насоса, поддерживают постоянный объём воздуха во время охлаждения.

Порядок выполнения работы

    Откройте заглушку газового термометра, подключите к термометру ручной вакуумный насос.

    Поверните осторожно термометр как показано слева на рис. 2 и откачайте воздух из него с помощью насоса так, чтобы капелька ртути оказалась в точке a) (см. рис.2).

    После того как капелька ртути собралась в точке a)поверните термометр отверстием наверх и спустите нагнетенный воздух ручкойb) на насосе (см. рис.2) осторожно, чтобы ртуть не разделилась на несколько капелек.

    Нагреть воду в стеклянном сосуде на плитке до 90°С.

    Налить горячую воду в стеклянный сосуд.

    Поместить в сосуд газовый термометр, закрепив его на штативе.

    Поместить термопару в воду, постепенно эта система охлаждается. Откачивая воздух из газового термометра с помощью ручного вакуумного наноса, поддерживаете постоянный объём столба воздуха в течении всего процесса охлаждения.

    Фиксируйте показание манометра р и температуруТ .

    Постройте зависимость полного давления газаp 0 +p +p Hg от температуры в о С.

    Продолжите график до пересечения с осью абсцисс. Определите температуру пересечения, объясните полученные результаты.

    По тангенсу угла наклона определите температурный коэффициент давления.

    Рассчитайте зависимость давления от температуры при постоянном объеме по закону Шарля и постройте график. Сравните теоретические и экспериментальные зависимости.

По закону Бойля V1: V2 = Р2: P1 при постоянной температуре

По закону Гей-Люсака V1: V2 = T1: T2 при постоянном давлении
P1: Р2 = T1: T2 при постоянном объёме
Из формул, представленных выше, можно заметить, что две из трех величин, могут рассматриваться как переменные, если третья постоянна. Нет такого состояния, при котором давление, объем и температура могли бы все рассматриваться как переменные.
Однако бывают случаи, когда все величины переменные, а один фактор неизвестен. В практических случаях такие задачи могут быть решены по аналогии с примерами ниже:
Газ при температуре 20 o C занимает объем 0,98 м 3 в цилиндре диаметром 50 мм, к поршню приложена сила 980Н. Каким будет смещение поршня, если сила, приложенная к поршню, удвоилась, а температура увеличилась до 50 o C?
Смещение поршня легко определить при задании изменений объема. Однако, в задаче задано только одно значение объема (0,98 м 3), а другое неизвестно.
Чтобы установить зависимости между всеми параметрами, которые являются переменными, изменения объема должны быть рассмотрены отдельно при двух фазах.

Случай А 1-ая фаза

Газ нагревается от температуры t = 20 o C, которая соответствует абсолютной температуре T1 = 20 + 273 = 293 o K, до температуры 50 o C, которая соответствует T2 = (50 + 273) =323 o K. Если давление на поршень остается постоянным с нагрузкой 980Н, то произойдет увеличение объема газа. По закону Гей-Люсака V1: V2 = T1: T2
Vх = (0,98 323)/293 =1,08 дм 3 (промежуточное значение)

2-ая фаза
Газ, достигнув объема Vх = 1,08 дм 3 в результате увеличения температуры до T2 (323 o K), теперь получает дополнительное воздействие - увеличилась сила, приложенная к поршню. В результате, оно возрастает до P2 = 980 2 = 1960 Н, а объем уменьшается, поскольку воздух сжимается поршнем. По закону Бойля Vх: V2 = P2: Р1 (Vх P1 = V2 P2)
Подставляя заданные значения:
V2 = (1,08 980)/1960 = 0,54 дм 3 (окончательное значение)

Отметим, что параметры P1 и Р2 были представлены как символы приложенной силы, а не единицы давления. Это - не ошибка, поскольку сила относится непосредственно к давлению в этом примере, так как диаметр поршня не изменяется.

Это подтверждается следующими вычислениями.
I. Площадь поверхности поршня в см 2 (3,14 D2)/4
Диаметр = 50 мм = 5 см S = (3,14 52)/4 = 19,6 см 2
Давление на каждой стадии теперь можно рассчитать.
II. Начальное давление P1=Начальная сила/Площадь поверхности = 980Н/19,6см 2 = 50Н/см 2 =5кг/см 2
Финальное давление P2= Финальная сила/Площадь поверхности = (980 2)/19,6 =100Н/см=10кг/см 2
При равенстве площадей поверхности поршня увеличение вдвое приложенной силы удвоит давление.
Подставляя заданные значения:
Vх P1 = V2 P2
V2 = (1,08 дм 3 50 Н/см 2)/100Н/см 2 = (1,08 дм 3 5 кг/см 2)/10кг/см 2 = 0,54 дм 3

Этот же самый результат получен в предыдущем вычислении.
Можно получить результат, непосредственно используя следующее выражение, которое является комбинацией из двух начальных формул:
(P 1 V1)/Т1 = (P2 V2)/Т2
В примере объем V2 требуется для того, чтобы вычислить перемещение поршня
V2 = (Р1 V1 T2)/(T1 P2) = (5 0,98 323)/(293 10) = 0,54 дм 2
Используя оба объема, можно вычислить изменение в положении поршня, применяя геометрию:
Объем = площадь поверхности высота Высота в см = объем в см 2 / площадь в см 2
Начальная высота = 980см 3 /19,6см 2 =50см. Финальная высота = 540см 3 /19,6см 2 =27,5см
Перемещение поршня = 50-27,5=22,5 см В этой задаче принималось, что нагревание газа произошло в результате увеличения температуры внешней среды.

Если вспомнить эксперимент с велосипедным насосом, когда воздух сжат и у него нет возможности расширяться, выделяется тепло, то есть температура воздуха возрастает и это тепло передается к внешним поверхностям насоса. Обратный процесс возникает, когда газ расширяется.
Если у газа есть возможность расшириться, его температура уменьшится.
Изменения температуры воздуха порождают:
I. Возникновение тепла на стадии сжатия.
II. Поглощение тепла на стадии расширения.

Изменения температуры могут быть рассчитаны, как показано, при использовании величин из предыдущего примера.
Количество газа при температуре 293°K занимает объем V1 =0,98 дм 3 при давлении 5 бар. Если давление повысить до 10 бар, объем уменьшится до V2=0,54 дм 3 .
Какой станет температура газа? Важно помнить, что закон Бойля работает только тогда, когда температура постоянна. Поэтому, при 293°K повышение давления от P1 до P2 приводит к уменьшению объема газа с V1 до Vх: V1: Vх = P2: P1 то есть. V1 P1 = Vх P2
Подставляя известные значения: Vх = (0,98 5)/10=0,49 дм 3
Используя закона Гей-Люсака и рассматривая давление как постоянную величину P2 (к которому уже отнесен объем Vх), можно записать:
Vх: V2 = Т1: Т2 то есть Vх T2 = V2 T1
Подставляя известные значения: T2 = (0,54 293)/0,49 = 323°K Это значение равно значению, которое дано в начальном примере.

Математическим выражением закона Бойля-Мариотта являются формулы P 2 /P 1 =V 1 /V 2 или PV=const.

Пример: при некоторой температуре давление газа, занимающего объем 3 л, равно 93,3 кПа. Каким станет давление, если, не изменяя температуры, уменьшить объем газа до 2,8л?

Решение: обозначив искомое давление через Р 2 , можно записать
Р 2 /93,3=3/2,8. Отсюда: Р 2 =93,3*3/2,8=100 кПа.

Зависимость между объемом газа, давлением и температурой можно выразить общим уравнением, объединяющим законы Бойля-Мариотта и Гей-Люссака

где Р и V - давление и объем газа при данной температуре Т, Р о, V o - давление и объем газа при нормальных условиях.

Пример: при 25°С и давлении 99,3 кПа некоторое количество газа занимает объем 152 мл. Найти, какой объем займет это же количество газа при 0°С и давлении 101,33 кПа?

Решение: подставляя данные в уравнение, получаем

Vо=РVоТ/Р 0 Т=99,ЗкПа*152мл*273К/(101,33кПа*298К)=136,5мл.

Если условия, в которых находится газ, отличаются от нормальных, то используют уравнение Менделеева-Клапейрона, которое связывает все основные параметры газа

где Р - давление газа, Па; V - объем газа, м 3 ; m, - масса газа, г; М - мольная масса газа, г/моль; R - универсальная газовая постоянная, 11=8,31Дж/(моль*К); Т - температура газа, К.

ТЕМА 2.2ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ГАЗОВ

При определении молекулярных весов газообразных веществ часто приходится измерять объем газа, собранный над водой и потому насыщенного водяным паром. Определяя в этом случае давление газа, необходимо вводить поправку на парциальное давление водяного пара.

Парциальным давлением (р) называется та часть общего давления, производимого газовой смесью, которая приходится на долю данного газа.

При этом парциальное давление газа в смеси равно тому давлению, которое он производил бы, занимая один такой же объем, какой занимает смесь.

Пример: смешивают 2л кислорода и 4л оксида серы SO 2 , взятых при одинаковом давлении, равном 100 кПа; объем смеси 6л. Определить парциальное давление газов в смеси.

Решение: по условию задачи объем кислорода увеличился после смешения в 6/2=3 раза, объем оксида серы - в 6/4=1,5 раза. Во столько же раз уменьшились парциальные давления газов. Следовательно

р(О 2)= 100/3=33,3 кПа, p(SO 2)=100/l,5=66,7 кПа.

Согласно закону парциальных давлений, общее давление смеси газов, не вступающих друг с другом в химическое взаимодействие, равно сумме парциальных давлений газов, составляющих смесь.

Пример: смешивают Зл СО 2 , 4л О 2 и 6 л N 2 . До смешивания давление СО 2 , О 2 , N 2 .составляло соответственно 96, 108 и 90,6 кПа. Общий объем смеси 10л. Определить давление смеси.

Решение: находим парциальные давления отдельных газов

р(СО 2)=96*3/10=28,8кПа,

р(О 2)=108*4/10=43,2кПа,

p(N 2)=90,6*6/l 0=54,4кПа.

Общее давление газовой смеси равно сумме парциальных давлений

Р(смеси)=28,8кПа+43,2кПа+54,4кПа=126,4 кПа.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Какие условия, характеризующие газы, называются нормальными?

2. Какой объем занимает 1 моль любого газа при нормальных условиях?

3. Дайте формулировку закона Авогадро.

Понравилась статья? Поделитесь с друзьями!